在熊猫数据框中排序行
原文:https://www.geeksforgeeks.org/sorting-row-in-pandas-data frame/
Pandas DataFrame 是一个二维可变大小的、潜在异构的表格数据结构,带有标签轴(行和列)。在处理数据时,我们经常需要对行和列进行某些操作。
让我们看看如何对熊猫数据框中的行进行排序。
代码#1: 按科学排序行
# import modules
import pandas as pd
# create dataframe
data = {'name': ['Simon', 'Marsh', 'Gaurav', 'Alex', 'Selena'], 
        'Maths': [8, 5, 6, 9, 7], 
        'Science': [7, 9, 5, 4, 7],
        'English': [7, 4, 7, 6, 8]}
df = pd.DataFrame(data)
# Sort the dataframe’s rows by Science,
# in descending order
a = df.sort_values(by ='Science', ascending = 0)
print("Sorting rows by Science:\n \n", a)
Output:
Sorting rows by Science:
    English  Maths  Science    name
1        4      5        9   Marsh
0        7      8        7   Simon
4        8      7        7  Selena
2        7      6        5  Gaurav
3        6      9        4    Alex
代码#2: 先按数学再按英语对行进行排序。
# import modules
import pandas as pd
# create dataframe
data = {'name': ['Simon', 'Marsh', 'Gaurav', 'Alex', 'Selena'], 
        'Maths': [8, 5, 6, 9, 7], 
        'Science': [7, 9, 5, 4, 7],
        'English': [7, 4, 7, 6, 8]}
df = pd.DataFrame(data)
# Sort the dataframe’s rows by Maths
# and then by English, in ascending order
b = df.sort_values(by =['Maths', 'English'])
print("Sort rows by Maths and then by English: \n\n", b)
Output:
Sort rows by Maths and then by English: 
    English  Maths  Science    name
1        4      5        9   Marsh
2        7      6        5  Gaurav
4        8      7        7  Selena
0        7      8        7   Simon
3        6      9        4    Alex
代码#3: 如果你想先缺值。
import pandas as pd
# create dataframe
data = {'name': ['Simon', 'Marsh', 'Gaurav', 'Alex', 'Selena'], 
        'Maths': [8, 5, 6, 9, 7], 
        'Science': [7, 9, 5, 4, 7],
        'English': [7, 4, 7, 6, 8]}
df = pd.DataFrame(data)
a = df.sort_values(by ='Science', na_position ='first' )
print(a)
Output:
English  Maths  Science    name
3        6      9        4    Alex
2        7      6        5  Gaurav
0        7      8        7   Simon
4        8      7        7  Selena
1        4      5        9   Marsh
由于本例中没有缺失值,这将产生与上面相同的输出,但按升序排序。
