熊猫分组排
Pandas 是最流行的用于数据分析的 Python 库。它提供了高度优化的性能,后端源代码完全用 C 或 Python 编写。
让我们看看如何在多个例子的帮助下对熊猫数据框中的行进行分组。
例 1:
为了对 pandas 中的行进行分组,我们将首先创建 Pandas 数据框。
# importing Pandas
import pandas as pd
# example dataframe
example = {'Team':['Arsenal', 'Manchester United', 'Arsenal',
'Arsenal', 'Chelsea', 'Manchester United',
'Manchester United', 'Chelsea', 'Chelsea', 'Chelsea'],
'Player':['Ozil', 'Pogba', 'Lucas', 'Aubameyang',
'Hazard', 'Mata', 'Lukaku', 'Morata',
'Giroud', 'Kante'],
'Goals':[5, 3, 6, 4, 9, 2, 0, 5, 2, 3] }
df = pd.DataFrame(example)
print(df)
现在,创建一个分组对象,意味着一个代表该特定分组的对象。
total_goals = df['Goals'].groupby(df['Team'])
# printing the means value
print(total_goals.mean())
输出:
例 2:
import pandas as pd
# example dataframe
example = {'Team':['Australia', 'England', 'South Africa',
'Australia', 'England', 'India', 'India',
'South Africa', 'England', 'India'],
'Player':['Ricky Ponting', 'Joe Root', 'Hashim Amla',
'David Warner', 'Jos Buttler', 'Virat Kohli',
'Rohit Sharma', 'David Miller', 'Eoin Morgan',
'Dinesh Karthik'],
'Runs':[345, 336, 689, 490, 989, 672, 560, 455, 342, 376],
'Salary':[34500, 33600, 68900, 49000, 98899,
67562, 56760, 45675, 34542, 31176] }
df = pd.DataFrame(example)
total_salary = df['Salary'].groupby(df['Team'])
# printing the means value
print(total_salary.mean())
输出: